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Simulations of fluid displacement in heterogeneous porous 
media 
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CSIRO Division of Geomechanics, PO Box 54, Mount Waverley, Victoria 3149, Australia 

Received 18 August 1986 

Abstract. Diffusion-limited aggregation is a proven method for simulation of certain types 
of two-fluid displacements in porous media. Heterogeneity in permeability can be simulated 
by setting the lattice spacing equal to the local permeability. 

1. Introduction 

The phenomenon of viscous fingering has proved to be a formidable barrier to both 
the economic recovery of oil and attempts to understand the phenomenon itself. A 
relatively modern review of fingering in porous media has been presented by Stalkup 
(1983). Recently, however, a new approach has been receiving consideration: an 
approach based on diff usion-limited aggregation ( DLA). 

Since the original application of Witten and Sander’s (1983) DLA algorithm to flow 
in porous media (Paterson 1984), a number of workers have developed the concept 
to include more general problems. For instance, displacements involving arbitrary 
mobility ratios have been considered (DeGregoria 1985, Sherwood and Nittmann 
1986). Attention has also been devoted to surface tension and flow in Hele Shaw cells 
(Nittmann et al 1985, Kadanoff 1985, Tang 1985, Liang 1986). 

The DLA model is only an exact model for fluid displacement when there is an 
exponential distribution of fluid capacities (Chan er a1 1986), but for many systems 
DLA may be a useful approximation. This has been demonstrated experimentally by 
Chen and Wilkinson (1983, Lenormand and Zarcone (1985) and Maloy et al (1985). 

Although it has been briefly mentioned (Paterson 1984), the algorithm for simulating 
flow in media with macroscopic permeability variations has not been described in 
detail. In this paper the algorithm for modelling heterogeneity is described. Some 
examples of simulations are included. Attention here is focused on the problem of oil 
recovery from a pattern of wells known as one quarter of a five-spot. It is assumed 
that the permeable strata is not very thick and that two-dimensional simulations are 
adequate. However the extension to three dimensions is straightforward. Only simula- 
tions at infinite and zero mobility ratios are presented in this paper, although the 
problem of modelling displacements with an arbitrary mobility ratio is discussed. 

2. The DLA analogy 

For most situations of practical interest, flow in porous media is governed by Darcy’s 
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law 

4 = - ( k / p F P  (1) 

where q is the volume flow rate per unit area, k is permeability, p is viscosity and p 
is pressure. k / p  is known as the mobility. For an  incompressible fluid 

v . q = o .  ( 2 )  

v2p = 0. (3) 

Thus, for incompressible fluids, 

The DLA algorithm considers a flux of walkers from a source to a sink (the aggregate) 
on which the walkers stick. For a steady flux of walkers Witten and Sander (1983) 
determined the continuum approximation 

v 2 u  = 0 (4) 
where U is the probability density of finding a walker at a point at any given time. 
When walkers stick on contact with the aggregate, then the aggregate advances accord- 
ing to 

v = K C u  ( 5 )  
where U = 0 on the boundary of the aggregate. The analogy between diffusion-limited 
aggregation and two-fluid displacements in porous media is based on the similarity of 
equations (1) and (3) with (4) and ( 5 ) .  Furthermore, the lattice spacing is a component 
of K.  Thus it is apparent how one might relate K to k l p .  K is also proportional to 
the sticking probability. Generally the area of a walker upon sticking has been taken 
as the square of the step length, but this need not be the case. 

The anti-DLA algorithm is identical to the DLA algorithm, except that walkers are 
allowed to step onto the aggregate and eat a piece out of the aggregate rather than 
sticking to it. 

3. Heterogeneous media 

We begin by considering the flow of a fluid in porous medium from region 1 of 
macroscopic permeability k ,  into region 2 of macroscopic permeability k , .  At the 
permeability discontinuity the normal component of flow rate per unit area must be 
continuous across the boundary 

(6) 
where n is normal to the boundary and q ,  and q2 are measured just inside regions 1 
and 2 respectively. Additionally, pressure must be continuous along the boundary 
(Bear 1972) 

q ,  * n = q2 . n 

PI = P 2 .  ( 7 )  
These continuity conditions are equivalent to having a change in lattice cell size in a 
DLA simulation. At a discontinuity in lattice cell size 

V u ,  . n = V u 2 .  n. (8) 

U1 = U 2  (9) 

With U, the probability of finding a walker at a site, playing the role of pressure 

in the limit Ax + 0, where Ax is the lattice spacing. 
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This concept is illustrated in one dimension (figure 1) when we consider that the 
probability of finding a walker at the discontinuity site is U ,  = ( u , + ~  + ~ , - ~ ) / 2 .  Then 

a u , / a x  = ( U ,  - u t - l ) / A x l  au, lax = ( U , + ]  - u , ) / A x , .  (10) 

Conditions (6) and (7) hold when the mobility ratio ( k l / p l ) / ( k 2 / p 2 )  = A x , / A x 2 .  If 
the permeability discontinuity occurs within one of the fluids, then p 1  = p2 and thus 
k l / k 2 = A x l / A x z .  

In addition to the conditions at the permeability discontinuity, it is also necessary 
to consider the condition at the moving interface between the fluids: equation (1). 
Thus the velocity of the interface has to be proportional to the length of the cells of 
the lattice. However, the velocity of the interface also depends on the area of the cells, 
so an adjustment needs to be made. This is perhaps best considered by examining 
anti-DLA in a thin strip (figure 2).  If the two interfaces were some equal distance from 
the source, walkers will hit the right interface with twice the frequency of the left 
interface, because twice as many ‘left’ steps are required to hit the left boundary. Thus 
the right interface moves twice as fast, as required. However, if the area of the walkers 
that stick on the left is only one quarter of the area of the walkers that stick on the 
right, then the right interface will move an additional four times as fast due to this 
effect. This can be compensated for by allowing only one out of every four walkers 
that hit the right interface to stick, the rest being forgotten (the method used in this 
paper). Alternatively, the area of the walkers could be kept constant, with only the 
step size depending on the lattice spacing. In this manner, the minimum size for a 
finger could be scaled on some other physical grounds, for example the pore size (see 
Paterson 1985), or the scaling factor might be the length below which detail is eliminated 
by hydrodynamic dispersion. Yet another way to adjust the velocity at the interface 
is to change the number of hits of random walkers to a site before it is occupied, i.e. 
the number M described by Tang (1985) and Liang (1986), or the number s described 
by Nittmann and Stanley (1986). However, this also alters the noise experienced by 
the interface (Nittmann and Stanley 1986). Thus one would need to consider whether 
the level of noise should be the same in each region of macroscopic permeability. 

Discmtinuity 

ui-1 ui Ui.1 

Figure 1. Conditions at a permeability discontinuity in one dimension. 

Source I+H.i 
“1 - - “2 

Figure 2. Anti-DLA in a thin strip; consideration of the conditions at the moving interfaces. 
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Wfhdrawal 7 

Injection 

Figure 3. An example of a stable anti-DLA simulation in a region of homogeneous 
permeability. The region corresponds to a pattern encountered in oil recovery known as 
one quarter of a five-spot. The numerical values specify the fraction of the total area 
displaced. 

Following a n  example of a n  anti-DLA displacement in a region of homogeneous 
permeability (figure 3) ,  some examples of simulations with regions of different per- 
meabilities are included for both DLA and anti-DLA. Results of simulations with an 
inner region that is half the permeability of the outer region are shown in figures 4, 5 
and 6 .  The inner region is 60 x 60 of the larger lattice units, whereas the outer region 
is bounded by 100 x 100 lattice units. In figure 4 it is apparent that the low permeability 
region acts like a lens refracting the interface. Figures 5 and 6 differ in the sequence 
of random numbers that was used to generate them. In figure 5 the main finger 
penetrated through the low pemeability region (note again the refraction at the permea- 
bility discontinuities) whereas in figure 6 the main finger evaded the low permeability 
region. Boundary conditions for these examples consists of reflecting the walkers at 
the limit of the lattice, equivalent to a no-flow condition in an  experiment. 

4. Mobility ratio 

Although this problem has been solved with the inclusion of more conventional 
numerical methods (DeGregoria 1985, Sherwood and Nittmann 1986), it would be 
advantageous to be able to simulate using random walkers because of the prospect of 
better computational speed (Sherwood and  Nittmann’s simulations took many hours 
on a moderately sized machine, whereas comparable DLA simulations can be run within 
an  hour or two on a personal computer). 
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t Injection 

Figure 4. An example of a stable anti-DLA simulation with an inner region that is half the 
permeability of the outer region. 

Withdrawal 7 

Injection 

Figure 5. An example of an unstable DLA simulation with an inner region that is half the 
permeability of the outer region. 
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In ju t ion 

Figure 6. A simulation identical to that used for figure 5 ,  except that a different sequence 
of random numbers was used. 

If the change in lattice size were to move with the moving interface, then we would 
almost have an  algorithm for arbitrary mobility ratio. At the interface 

ql n = q2 n. (11) 

p1=p2. (12) 

Additionally, pressure must be continuous along the interface: 

These are identical to the conditions at the permeability discontinuity. The ratio k / p  
in Darcy’s law shows that k and p play similar roles. The difference is that permeability 
k remains fixed with the porous medium, whereas viscosity p moves with the fluids. 
Thus the algorithm for arbitrary mobility ratio would release a walker from the injection 
point and  allow it to walk until it reaches the withdrawal point. At the point where 
the walker crossed the interface the interface would be advanced one unit. The problem 
is that, because there is a n  unbiased random walk, a frequent occurrence will be for 
the walkers to cross the interface many times. At which crossing should the interface 
be advanced? Until a rational decision can be made, this remains an  impasse. An 
alternative algorithm for arbitrary mobility ratio that utilises random walkers has been 
proposed (Sahimi and Yortsos 1985). However, this algorithm only considers some 
of the conditions at the interface and is not expected to be generally applicable. 
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